\(\frac{\left(n+1\right)\left(3n+2\right)}{2}=\frac{3n^2+5n+2}{2}=\frac{3}{2}n^2+\frac{5}{2}n+1\)
\(\frac{\left(n+1\right)\left(3n+2\right)}{2}=\frac{3n^2+5n+2}{2}=\frac{3}{2}n^2+\frac{5}{2}n+1\)
Chứng minh rằng : số A =( n + 1 ).(3n + 2) chia hết cho 2 với mọi n là số tự nhiên.
Chứng minh rằng :
Số A = (n + 1) . (3n + 2) chia hết cho 2 , với mọi giá trị n
cho A= 3n2 +3n
chứng minh rằng A chia hết cho 6 với mọi số nguyên n
Chứng minh rằng:
a) n^3 + 3n^2+ 2n chia hết cho 6 với mọi số nguyên n
b)9n+1 không chia hết cho 100
c) n^2 +n+2 ko chia hết cho 15
Bài 1 : Chứng minh rằng với mọi số nguyên n : ( Giải từng ý => like )
a, (3n + 2) - (n - 6) chia hết cho 2
b, (n+2) + (n+4) + 6 chia hết cho 2
c, (n+3) + 2 . (n+4) + 1 chia hết cho 3
Chứng minh rằng với mọi số nguyên n thì :
3.5^2n+1 + 2^3n+1 chia hết cho 17
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
Cho A = n^3 + 3n^2 + 2n
a)Chứng minh rằng A chia hết cho 3 với mọi số nguyên n.
b) Tìm giá trị nguyên dương của n với n<10 để A chia hết cho 15.
CHO A = n^3 + 3n^2 + 2n
a, Chứng minh rằng A chia hết cho 3 với mọi n là số nguyên
b, Tìm giá trị nguyên dương của n với n < 10 để A chia hết cho 15