\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(\Rightarrow S=\left(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{45}\right)+\frac{1}{46}+\frac{1}{47}...+\frac{1}{60}\)
\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\frac{1}{46}+\frac{1}{47}...+\frac{1}{60}\)(15 số hạng \(\frac{1}{30}\))
\(\Rightarrow S< \frac{15}{30}+\frac{1}{46}+\frac{1}{47}...+\frac{1}{60}< \frac{1}{2}< \frac{4}{5}\)
Vậy \(S< \frac{4}{5}\)
S < 1/40 x 30 = 3/4 < 4/5
=) S < 4/5
Vậy S < 4/5
học tốt nha
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{40}< \frac{1}{30}.10=\frac{1}{3}\left(1\right)\)
\(\frac{1}{41}< \frac{1}{40};\frac{1}{42}< \frac{1}{40};\frac{1}{43}< \frac{1}{40};...;\frac{1}{50}< \frac{1}{40}\)\(\Rightarrow\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{50}< \frac{1}{40}.10=\frac{1}{4}\left(2\right)\)
\(\frac{1}{51}< \frac{1}{50};\frac{1}{52}< \frac{1}{50};\frac{1}{53}< \frac{1}{50};...;\frac{1}{60}< \frac{1}{50}\)\(\Rightarrow\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{60}< \frac{1}{50}.10=\frac{1}{5}\left(3\right)\)
Từ (1) ,(2) và (3) suy ra
\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)
\(\Rightarrow S< \frac{4}{5}\)