Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Việt Dũng

Chứng minh rằng:

n(n+1)(n+2) chia hết cho 6

 

𝑷𝒉𝒖𝒐𝒏𝒈 𝑨𝒏𝒉
19 tháng 5 2022 lúc 23:06

Ta có n ; n+1 ; n+2 là 3 số tự nhiên liên tiếp

Vì trong 3 số tự nhiên liên tiếp , có ít nhất 1 số chia hết cho 2

\(\Rightarrow\) n(n+1)(n+2) \(⋮\) 2 (1)

Vì trong 3 số tự nhiên liên tiếp , có 1 số chia hết cho 3

\(\Rightarrow\) n(n+1)(n+2) \(⋮\) 3 (2)

Từ (1) và (2) \(\Rightarrow\) n(n+1)(n+2) \(⋮\) (2.3) ( Vì ƯCLN(2,3)=1 )

                      \(\Rightarrow\) n(n+1)(n+2) \(⋮\) 6   (ĐPCM)

Vậy...

 

Nguyễn Duy Hưng
20 tháng 5 2022 lúc 10:29

Ta có n ; n+1 ; n+2 là 3 số tự nhiên liên tiếp

Vì trong 3 số tự nhiên liên tiếp , có ít nhất 1 số chia hết cho 2

 n(n+1)(n+2)  2 (1)

Vì trong 3 số tự nhiên liên tiếp , có 1 số chia hết cho 3

 n(n+1)(n+2)  3 (2)

Từ (1) và (2)  n(n+1)(n+2)  (2.3) ( Vì ƯCLN(2,3)=1 )

                       n(n+1)(n+2)  6   (ĐPCM)


Các câu hỏi tương tự
Nguyễn Tuyết Mai
Xem chi tiết
Lỗ Thị Thanh Lan
Xem chi tiết
Linh
Xem chi tiết
Nguyen the phong
Xem chi tiết
Soobin
Xem chi tiết
Dương Dương
Xem chi tiết
Nguyễn Đăng Hải
Xem chi tiết
trần minh quân
Xem chi tiết
Huy Hoàng
Xem chi tiết