Chứng minh rằng nếu tích một nghiệm của phương trình x^2+ax+1=0 với 1 nghiệm nào đó của phương trình x^2+bx+1=0 là 1 nghiệm của phương trình x^2 + abx+1=0 thì :4/(ab)^2 - 1/2^2-1/b^2=2
Giải xong cho 2 like
cho phương trình \(\frac{1}{2}x^2-\left(k-\frac{1}{2}\right)x+k-1=0\)(x là ẩn, k là tham số có giá trị thực)
a) Chứng minh rằng phương trình luôn luôn có nghiệm
b) Gọi x1,x2 là các nghiệm của phương trình trên, khi đó
cho phương trình : \(^{x^2-\left(m-1\right)-m^2+m-2=0}\), với m là tham số
a, chứng minh rằng phương trình đã cho có hai nghiệm trái dấu với mọi m
b, gọi hai nghiệm của phương trình đã cho là x1, x2. Tìm m để biểu thức A=\(\left(\frac{x1}{x2}\right)^3-\left(\frac{x2}{x1}\right)^3\)đạt GTLN
cho phương trình (x-1)(x-3)(x-4)(x-12)=ax^2 (a là tham số). giả sử a nhận các giá trị sao cho phương trình có 4 nghiệm x1,x2,x3,x4 đều khác 0. CMR: S =\(\frac{1}{x1}+\frac{1}{x2}+\frac{1}{x3}+\frac{1}{x4}\) không phụ thuộc vào a.
giúp mình với =)
Cho phương trình x2-2mx+m-4=0 (1) (m là tham số)
a) Chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị của m.
b) Với giá trị nào của m thì phương trình (1) luôn có 2 nghiệm x1, x2 thỏa mãn \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x^2_2}{x_1}\)
Cho phương trình ẩn x: x^2 – (5m – 1)x + 6m^2 – 2m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
b) Gọi x1, x2 là các nghiệm của (1). Tìm m để x1^2 + x2^2 = 1
Bài 4:Cho phương trình ẩn x: x2 - (m + 3)x + m = 0
a) Chứng minh rằng với mọi giá trị của m phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm Phân biệt x1, x2 thỏa mãn hệ thức:
x12 + x22 = 6
Cho phương trình x2 - 2(m + 1)x + m - 4 = 0
a) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi m ( phần này không cần làm nhen)
Gọi x1 , x2 là 2 nghiệm của phương trình. d/ CMR biểu thức M = x1(1 - x2) + x2(1 - x1) không phụ thuộc vào m
Cho 2 phương trình :x^2+ax+1=0 và x^2+bx+1=0.Chứng minh rằng :Nếu ab>=4 thì tồn tại ít nhất một trong 2 phương trình đã có nghiệm .