Từ B kẻ đường cao BH (H thuộc AC)
\(S_{ABC}=\frac{1}{2}AC.BH\) (1)
Xét tam giác vuông ABH có
\(sinA=\frac{BH}{AB}\Rightarrow BH=AB.sinA\) (2)
Thay (2) vào (1) => \(S_{ABC}=\frac{1}{2}AB.AC.sinA\)
Từ B kẻ đường cao BH (H thuộc AC)
\(S_{ABC}=\frac{1}{2}AC.BH\) (1)
Xét tam giác vuông ABH có
\(sinA=\frac{BH}{AB}\Rightarrow BH=AB.sinA\) (2)
Thay (2) vào (1) => \(S_{ABC}=\frac{1}{2}AB.AC.sinA\)
Cho tam giác ABC vuông tại A , đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên cạnh AB và AC.
a) Chứng minh rằng: AE.AB=AF.AC
b) Chứng minh rằng nếu diện tích tan giác ABC bằng 2 lần diện tích tứ giác AEHF thì tam giác ABC vuông cân.
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.
1 ) Cho tam giác ABC có góc A nhọn , AB=4 , AC=5 và diện tích tam giác ABC =8 . Tính BC
2 ) Cho tam giác ABC có AB=3 , góc ACB = 45° , góc ABC = 60° . Tính BC
cho tam giác ABC có AB= C; AC= b; góc A= \(\alpha\) chứng minh
diện tích tam gác ABC= \(\frac{1}{2}\) b . c . sinA
Cho tam giác ABC nội tiếp đường tròn tâm O. Phân giác trong vủa góc A cắt BC và đường tròn lần lượt tại D,E.Gọi M,N lần lượt là hình chiều của D lên AC,AB.
a) chứng minh tứ giác AMDN nội tiếp đựơc.
b) góc MAN bằng anpha ( nhọn). Chúng minh rằng diện tích tam giác ABC bằng 1/2(AD×AE× SINanpha )
C) tính tỈ số diện tích tam giác ABC và tứ giác ANEM.
cho tam giác abc vuông tại a đường cao ah . Từ h kẻ hd và he lần lượt vuông góc với ab,ac. giả sử diện tích tam giác abc=2 diện tích tam giác adhe chứng minh rằng tam giác abc vuông cân
cho tam giác ABC có BC cố định góc A= 90 độ không đổi sao cho AB<AC. Lấy E bất kì thuộc AC, kẻ CK vuông góc với BE, CK cắt AB tại I
a, Giả sử góc C = 30 độ, AB= 12cm. tính chu vi và diện tích tam giác ABC
b, Chứng minh rằng: IK.IC=IA.IB
c, Chứng minh rằng: BE.BK+CE.CA không phụ thuộc vào vị trí điểm A
d, Giả sử IA=0,5IC . Chứng minh rằng diện tích tam giác ABC bằng 3 lần diện tích AIK
Cho tam giác ABC có AB = 6cm, AC = 4,5cm, BC = 7,5cm.
a) Chứng minh tam giác ABC vuông tại A. Tính các góc B, C và đường cao AH của tam giác đó.
b) Hỏi rằng điểm M mà diện tích tam giác MBC bằng diện tích tam giác ABC nằm trên đường nào?