Có a6-1=(a3+1)(a3-1)
Nếu a= 7k \(\pm1\left(k\in N\right)\) thì BS7 \(\pm1\)
Nếu a = 7k \(\pm2\) thì a3=BS7 \(\pm8\)
Nếu a = 7k \(\pm3\) thì a3=BS7 \(\pm27\). Ta luôn luôn có a3+1 hoặc a3-1 chia hết cho 7.
Do đó a6 -1 chia hết cho 7
P/S: bài toán là trường hợp đặc biệt của định lí nhỏ Phéc-ma : ap-1-1 chia hết cho p với p =7