Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Ngọc

Chứng minh rằng nếu p là só nguyên tố lớn hơn 3 thì (p-1).(p+1) chia hết cho 24.

Ngu Ngu Ngu
13 tháng 3 2017 lúc 12:20

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24 (Đpcm)

Aquarius Love
13 tháng 3 2017 lúc 12:21

Vì p là số nt lớn hơn 3 nên p lẻ

=> p - 1, p + 1 là hai số chẵn liên tiếp

=> (p - 1)(p + 1) chia hết cho 8 (hai số chẵn liên tiếp luôn luôn chia hết cho 8)

Vì p > 3 nên p=3k+1 hoặc p=3k+2     (\(p\in N^{sao}\))

+) Với p = 3k + 1 thì p - 1 = (3k + 1) - 1 = 3k chia hết cho 3  thì (p - 1)(p + 1) chia hết cho 3

+) Với p = 3k + 2 thì p +1 = (3k + 2) +1 = 3k + 3 chia hết cho 3 (p - 1)(p + 1) chia hết cho 3.

mà (3;8)=1 nên (p - 1)(p+1) chia hết cho 24 với p >3.

Phan Hoàng Hà Vi
13 tháng 3 2017 lúc 12:35

P là nguyên tố >3 =) P không chia hết cho 2 và 3

Ta có P không chia hết cho 2

=) P-1 và P+1 là hai số chẵn liên tiếp =) (P-1).(P+1) chia hết cho 8 (1)

Mặt khác P không chia hết cho 3 =) P có dạng 3k+1 và 3k+2

+) Nếu P=3k+1 thì P-1=3k chia hết cho 3 =) (P-1).(P+1) chia hết cho 3

+) Nếu P=3K+2 thì P+1 =3k+3 chia hết cho 3 =) (P-1).(P+1) chia hết cho 3 (2)

Từ (1) và (2) =) (P-1).(P+1) chia hết cho 3 và 8 mà (3;8)=1

=) (P-1).(P+1) chia hết cho 24


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Hoang Danh Duc
Xem chi tiết
Lê Nam Chinh
Xem chi tiết
Pham Tien Dat
Xem chi tiết
cô bé thì sao nào 992003
Xem chi tiết
Lê Hoàng Minh
Xem chi tiết
Nguyễn Trúc Phương
Xem chi tiết
Nguyễn Thu Hiền
Xem chi tiết
Nguyễn Văn phong
Xem chi tiết