Nếu n là số lẻ thì số lẻ nhân với một số lẻ được tích cũng là số lẻ => 3n là một số lẻ
Mà một số chẵn cộng với một số lẻ được tổng là một số lẻ => 3n + 2 là một số nguyên lẻ nếu n lẻ
3n + 2 là số nguyên lẻ <=> 3n là số nguyên lẻ . ( vì 2 là số nguyên chẵn ) .
<=> n là số nguyên lẻ .
Ngược lại : n là số nguyên lẻ
=> 3n là số nguyên lẻ .
=> 3n + 2 là số nguyên lẻ . ( vì 2 là số nguyên chẵn )
Do đó bài toán được chứng minh .