\(\frac{ay-bx}{c}=\frac{bz-cy}{a}=\frac{cx-az}{b}\)
\(\Rightarrow\frac{cay-cbx}{c^2}=\frac{abz-cay}{a^2}=\frac{cbx-abz}{b^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{cay-cbx}{c^2}=\frac{abz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{\left(cay-cbx\right)+\left(abz-cay\right)+\left(cbx-abz\right)}{a^2+b^2+c^2}=0\)
Do đó : \(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\)( 1 )
\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{x}{a}=\frac{z}{c}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)