Chứng minh rằng nếu a,b,c và √a+√b+√c là các số hữu tỉ thì √a,√b,√c cũng là các số hữa tỉ
Cho a, b là số hữu tỉ, c, d là số hữu tỉ dương và c, d không là bình phương của số hữu tỉ nào. Chứng minh rằng nếu:
\(a+\sqrt{c}=b+\sqrt{d}\) thì \(\hept{\begin{cases}a=b\\c=d\end{cases}}\)
Chứng minh √7 là số vô tỉ.
Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
xét xem các số a và b có thể là số vô tỉ hay không nếu
a, ab và a/b là các số hữu tỉ
b, a+b và a/b là các số hữu tỉ (a+b #0)
c, a+b , a^2 và b^2 là các số hữu tỉ (a+b #0)
giúp mk nha cảm ơn các bn
Giả sử a, b là số hữu tỉ dương, ngoài ra b không là bình phương của số hữu tỉ nào. Chứng minh rằng tồn tại số hữu tỉ c, d sao cho:
\(\sqrt{a+\sqrt{b}}=\sqrt{c}+\sqrt{d}\) thì \(a^2-b\) là bình phương của một số hữu tỉ. Điều ngược lại có đúng không?
cho các số dương a,b,c thỏa mãn các điều kiện a<bc và 1+a^3=b^3+c^3 chứng minh rằng 1+a<b+c . mình đang học lớp 10 nếu có ai có thể giải bằng phản chứng thì cảm ơn nha
Cho a, b, c, d là các số hữu tỉ và a+b+c+d=0
Chứng minh rằng:
\(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ thỏa mãn a+b+c+d=0. Chứng minh rằng \(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\)là một số hữu tỉ
Chứng minh rằng : \(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\)là số hữu tỉ trong đó a,b,c,d là số hữu tỉ thỏa mãn điều kiện:
a+b+c+d=0
Nhớ giải thích nha mình TICK cho
Cho a,b,c \(\in\)Q đôi một khác nhau. Chứng minh :
\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\) là số hữu tỉ.
Mọi người ai biết làm bài này giúp mình với nha. mình cảm ơn ạ.