Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hồng Ngọc

Chứng minh rằng nếu a,b,c và √a+√b+√c là các số hữu tỉ thì √a,√b,√c cũng là các số hữa tỉ

Tran Quoc Viet
3 tháng 5 2016 lúc 13:08

vi a,b,c deu viet dc duoi dang phan so: a/m ;b/m c/m

\(\sqrt{a}\sqrt{b}\sqrt{c}\)cung dc viet  duoi dang phan so:\(\sqrt{\frac{a}{m}}\sqrt{\frac{b}{m}}\sqrt{\frac{c}{m}}\)

Hương Đinh Tử
16 tháng 5 2016 lúc 15:06

a,b,c đều viết được dưới dạng phân số:

\(\frac{a}{x}+\frac{b}{x}+\frac{c}{x}\)=>...

Trần Thanh Phương
15 tháng 9 2019 lúc 14:55

Đặt \(\sqrt{a}+\sqrt{b}+\sqrt{c}=a\left(a\in Q\right)\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}=a-\sqrt{c}\)

\(\Leftrightarrow a+b+2\sqrt{ab}=a^2+c-2a\sqrt{c}\)

\(\Leftrightarrow2\sqrt{ab}+2a\sqrt{c}=a^2+c-a-b\)

\(\Leftrightarrow\sqrt{ab}+a\sqrt{c}=\frac{a^2+c-a-b}{2}\in Q\)

Đặt \(\sqrt{ab}+a\sqrt{c}=r\left(r\in Q\right)\)

\(\Leftrightarrow\sqrt{ab}=r-a\sqrt{c}\)

\(\Leftrightarrow ab=r^2+a^2c-2ar\sqrt{c}\)

\(\Leftrightarrow2ar\sqrt{c}=r^2+a^2c-ab\)

\(\Leftrightarrow\sqrt{c}=\frac{r^2+a^2c-ab}{2ar}\in Q\)

Chứng minh tương tự ta cũng có \(\sqrt{b}\in Q;\sqrt{a}\in Q\)

Ta có đpcm.


Các câu hỏi tương tự
Nguyễn Hồng Ngọc
Xem chi tiết
Messi
Xem chi tiết
Nhoc Nhi Nho
Xem chi tiết
Nguyễn Tài Tuệ
Xem chi tiết
Nguyen duc thanh
Xem chi tiết
Xem chi tiết
Kim Taehyung
Xem chi tiết
Lê Phương Thảo
Xem chi tiết
Trúc Linh
Xem chi tiết