a. Ta có: chia hết cho 7 nên chia hết cho 7. |
a. Ta có: chia hết cho 7 nên chia hết cho 7.
không chia hết cho 7 nên không chia hết cho 7.
3. .
Ta sẽ đi chứng minh chia hết cho với mọi nguyên.
Thật vậy:
.
Do là 5 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 5.
Mà nên tích chia hết cho .
Cũng do là ba số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3.
Suy ra tích chia hết cho .
Ta có đpcm.
Xét hiệu 10(3a +2b) - 3(10a +b) = 30a +20b - 30a -3b = 17b
- Nếu 3a +2b chia hết cho 17 => 10(3a +2b) chia hết cho 17 và 17b chia hết cho 17 do đó 3(10a +b) chia hết cho 17
Mà 3 và 17 nguyên tố cùng nhau. Suy ra 10a +b chia hết cho 17
- Lập luận tương tự để kết luận điều ngược lại đúng