Bài 1:
a) Chứng minh rằng số chính phương lẻ thì chia 8 dư 1
b) Chứng tỏ rằng nếu 2n + 1 và 3n + 1 là các số chính phương lẻ thì n chia hết cho 40 ( n thuộc N*)
Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40
1. tìm số tự nhiên n có hai chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương.
2.tìm số tự nhiên có hai chữ số, biết rằng nếu nhân nó với 45 thì được một số chính phương.
3.a) Các số tự nhiên n và 2n có tổng các các chữ số bằng nhau. Chứng minh rằng n chia hết cho 9.
b)* tìm số chính phương n cá ba chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không đổi.
Chứng minh rằng n+1 và 2n+1 là số chính phương thì n chia hết cho 24
giúp mình với mọi người ơi!!! Khẩn cấp!!!
1. Cho x,y thuộc N. Chứng minh rằng (x + 2y chia hết cho <=> (3x -4y) chia hêt cho 5
2. Viết liên tiếp số 2a1 (2007 lần) ta đc số chia hết cho 11. Tìm a
3. Chứng minh rằng một số chính phương hoặc chia hết cho 4 hoặc chia 4 dư 1
4. Chứng minh rằng nếu n + 1 và 2n + 1 đều là số chính phương thì n chia hết cho 24.
Cho n là một số nguyên dương thoả mản n+1 và 2n+1 là hai số chính phương. Chứng minh rằng n chia hết cho 24
Chứng minh rằng : với mọi n sao cho n+1 và 2n+1 đều là số chính phương thì n chia hết cho 24
1/ Tìm số tự nhiên n để A = 12n 2 - 5n - 25 là số nguyên tố.
2/ Chứng minh rằng: 2n + 1, 3n + 1 (n là số tự nhiên ) đều là số chính phương thì n chia hết cho 20
A)cho A=2^1+2^2+2^3+.....+2^60. Chứng minh rằng A chia hết cho 7
B)tìm các số tự nhiên n có 2 chữ số biết rằng 2n+1 và 3n+1 đều là các số chính phương.
giúp mình nhé!