\(0< a< 1\Rightarrow\hept{\begin{cases}a>0\\a-1< 0\end{cases}\Rightarrow}a\left(a-1\right)< 0\Rightarrow a^2-a< 0\Rightarrow a^2< a\Rightarrow a< \sqrt{a}\)
Vậy nếu 0 < x < 1 thì \(\sqrt{a}>a\)
\(0< a< 1\Rightarrow\hept{\begin{cases}a>0\\a-1< 0\end{cases}\Rightarrow}a\left(a-1\right)< 0\Rightarrow a^2-a< 0\Rightarrow a^2< a\Rightarrow a< \sqrt{a}\)
Vậy nếu 0 < x < 1 thì \(\sqrt{a}>a\)
chứng minh rằng nếu 0 < a<1 thì \(\sqrt{a>a}\)
chứng minh rằng nếu 0<a<1 thì \(\sqrt{a}\)>a
Chứng minh rằng nếu 0 < a < 1 thì \(\sqrt{a}\)< a
Chứng minh rằng nếu a,b là các số hữu tỉ thoả mãn a+b\(\sqrt{3}\) = 0 thì a = b = 0
Xét đa thức: P(x)=ax2+bx+c. Chứng minh rằng:
a) Nếu a+b+c=0 thì P(x) có một nghiệm x=1
b) Nếu a-b+c=0 thì P(x) có một nghiệm x=-1
Xét đa thức P(x) = ax^2 +bx + c. Chứng minh rằng:
a) Nếu a+b+c=0 thì P(x) có một nghiệm là x =1
b) Nếu a-b+c=0 thì P(x) có một nghiệm là x=-1
Cho đa thức f(x) = ax^2 + bx + c
a, Chứng minh rằng nếu a + b + c = 0 thì đa thức f(x) có nghiệm x = 1
b, Chứng minh rằng a - b + c = 0 thì đa thức f(x) có nghiệm bằng -1
Giải chi tiết giùm nha ai giải được mình like cho
Chứng minh rằng với x,y là hai số thực dương,ta có
a)Nếu a<b thì \(\sqrt{a}< \sqrt{b}\)b)Nếu \(\sqrt{a}< \sqrt{b}\) thì a<b
Cho đa thức f(x) = ax^2 + bx + c ( a, b, c là hằng số ). Chứng minh rằng
a) Nếu a + b + c = 0 thì f(x) có một nghiệm x=1
b) Nếu a - b + c = 0 thì f(x) có một nghiệm x= -1
c) Nếu f(1) = f(-1) thì f(x) = f(-x) với mọi x