\(9=3^2\)
\(min=1,min=2\left(\varnothing\right)\)
\(min=3\Rightarrow3^2+3+1=3^2+4\Leftrightarrow3^2⋮9\)\(;\)\(4⋮̸9\)
\(\Rightarrow n^2+n+1⋮̸9\)
Theo mình nghĩ đề cần thêm điều kiện n là STN
Bài làm:
Xét n có 3 dạng sau: 3k ; 3k+1 ; 3k+2
Nếu \(n=3k\) khi đó:
\(n^2+n+1=9k^2+3k+1=3k\left(3k+1\right)+1\) không chia hết cho 3
=> BT không chia hết cho 9
Nếu \(n=3k+1\) khi đó:
\(n^2+n+1=\left(3k+1\right)^2+3k+1+1=9k^2+6k+1+3k+2\)
\(=9k^2+9k+3=9\left(k^2+k\right)+3\) không chia hết cho 9
Nếu \(n=3k+2\) khi đó:
\(n^2+n+1=\left(3k+2\right)^2+3k+2+1=9k^2+12k+4+3k+3\)
\(=9k^2+15k+7=3\left(3k^2+5k+2\right)+1\) không chia hết cho 3
=> BT không chia hết cho 9
Từ 3 điều trên => đpcm