+Nếu n=2k =>n+6=2k+6=2(k+3) chia hết cho 2=>(n+1)(n+6) chia hết cho 2
+Nếu n=2k+1=>n+1=2k+1+1=2k+2=2(k+1) chia hết cho 2=>(n+1)(n+6) chia hết cho 2
+Nếu n=2k =>n+6=2k+6=2(k+3) chia hết cho 2=>(n+1)(n+6) chia hết cho 2
+Nếu n=2k+1=>n+1=2k+1+1=2k+2=2(k+1) chia hết cho 2=>(n+1)(n+6) chia hết cho 2
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
chứng minh rằng : với mọi n thuộc N thì 16^n - 15^n-1 chia hết cho 75
chứng minh rằng : với mọi n thuộc N* thì 5^n + 2.3^n-1 chia hết cho 8
1. Chứng minh rằng với mọi n thuộc N thì tích :
(n+6).(n+9) chia hết cho 2
chứng minh rằng: với mọi n thuộc Z thì (n-1).(n+1).n2.(n2+1) chia hết cho 6
chứng minh rằng A=n(n+1)(2n+1) chia hết cho 6 với mọi n thuộc N
?
Bài 5: Chứng minh rằng: Tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. (a^3 đọc
là a lập phương)
Bài 6: Chứng minh rằng:
a) n(n + 1) (2n + 1) chia hết cho 6
b) n^5 - 5n^3 + 4n chia hết cho 120 Với mọi số n thuộc N
Bài 7: Chứng minh rằng: n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 Với mọi số n Z
Bài 8: Chứng minh rằng: Với mọi số tự nhiên n lẻ thì :
a) n^2 + 4n + 3 chia hết cho 8
b) n^3 + 3n^2 - n - 3 chia hết cho 48
c) n^12 - n^8 - n^4 + 1chia hết cho 512
Bài 9: Chứng minh rằng:
a) Với mọi số nguyên tố p>3 thì p^2 – 1 chia hết cho 24
b) Với mọi số nguyên tố p, q >3 thì p^2 – q^2 chia hết cho 24
Bài 10: Chứng minh rằng:
n^3 + 11n chia hết cho 6 với mọi số n thuộc Z.
HD: Tách 11n = 12n – n
chứng minh rằng n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
Chứng minh rằng : n.(2n+1).(7n+1) chia hết cho 6. ( mọi n thuộc N )