\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)
\(=\frac{n+1-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(=\frac{1}{n}-\frac{1}{n+1}\) (đpcm)
Ta có :
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n.\left(n+1\right)}-\frac{1}{n.\left(n+1\right)}\)
\(=\frac{1}{n.\left(n+1\right)}\)
Tham khảo nha !!!
ko chép cách giải
tự làm ko được chép giải
\(\frac{1}{n\left(n+1\right)}\)
= \(\frac{n+1-n}{n\left(n+1\right)}\)
= \(\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
= \(\frac{1}{n}\)- \(\frac{1}{n+1}\)
Ta có : 1/n - 1/n+1 = n+1/n(n+1)- n/n(n+1)= n+1-n/n(n+1) = 1/n(n+1) (đpcm)