Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
chứng minh rằng:
\(\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\)
Cho A là tổng các phân số viết theo quy luật :
\(A=\frac{2009}{2}+\frac{2008}{2^2}+\frac{2007}{2^3}+...+\frac{2}{2^{2008}}+\frac{1}{2^{2009}}\). Hãy chứng tỏ rằng: 2008 < A < 2009
CHỨNG MINH rằng 2009 mũ 2009 chia hết cho 2008
Cho A=10^2012 +10^2011 +10^2010 +10^2009 +8
a) Chứng minh rằng A chia hết cho 24
b) Chứng minh rằng A không phải là 1 số chính phương
Chứng minh rằng: N= 2^2011(2^2011-2^2010-2^2009-....-2^2-2) là số chính phương
47. a) Chứng minh rằng : 14^14 – 1 chia hết cho 3 b) Chứng minh rằng : 2009^2009 – 1 chia hết cho 2008.
Chứng minh rằng số tự nhiên A chia hết cho 2009, với:
A=1.2.3...2007.2008(1+1/2+....+1/2007+1/2008)
cho A= 10^2012+10^2011+10^2010+10^2009+8
a, chứng minh rằng A chia hết cho 24
b,A không là số chính phương