Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
✓ ℍɠŞ_ŦƦùM $₦G ✓

chứng minh rằng mọi số tự nhiên n>6 có thể viết dưới dạng 2 số nguyên tố cùng nhau lớn hơn 1

Đinh Tuấn Việt
31 tháng 5 2015 lúc 10:46

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:

+)  Với n = 6k + 1 (k \(\in\) N*) 

=> n = 3k + (3k + 1)

3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 

+) Với n = 6k + 3

Viết n = (3k +1) + (3k +2) 

mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau

+) Tương tự với n = 6k + 5 

Viết n = (3k+2) + (3k +3)

mà 3k + 2 và 3k + 3 nguyên tố cùng nhau

+) Với n = 6k + 2 

Viết n = (6k -1) + 3

Gọi d = ƯCLN (6k - 1; 3)

=> 6k - 1 chia hết cho d;

    3 chia hết cho d => 3. 2k = 6k chia hết cho d

=> 6k - (6k -1) = 1 chia hết cho d => d = 1

do đó, 6k - 1 và 3 nguyên tố cùng nhau

+) Với n = 6k + 4 

Viết n = (6k +1 ) + 3

Dễ có: 6k +1 và 3 nguyên tố cùng nhau

=> ĐPCM 


Các câu hỏi tương tự
leminhkhang
Xem chi tiết
VŨ THỊ HUYỀN TRANG
Xem chi tiết
Hà Thúy Nga
Xem chi tiết
Lê Quang Hưng
Xem chi tiết
Bạn Thân Yêu
Xem chi tiết
Clash Of Clans
Xem chi tiết
Đinh Tuấn Việt
Xem chi tiết
Lưu Minh Quân
Xem chi tiết
dohuong
Xem chi tiết