chứng minh rằng luôn tồn tại nhất một số gồm các chữ số 0 vá 2 chia hết cho một số nguyên tố p với p>2
giúp tớ giải bài toán này với : Chứng minh rằng luôn tồn tại ít nhất một số gồm các chự số 0 và 2 chia hết cho một số nguyên tố p với p>2
CMR: luôn tồn tại ít nhất một số gồm các chữ số 0 và 2 chia hết cho 1 số nguyên tố p với p>2
chứng minh rằng luôn tồn tại một số chia hết cho 13 mà số đó : a,chỉ gồm chữ số 5 và 0 b, chỉ gồm toàn chữ số 5
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
Cho 2 số nguyên tố lẻ liên tiếp lớn hơn 3.Chứng minh rằng luôn tồn tại 1 hợp số ở giữa 2 số nguyên tố đó chia hết cho 6.
Chứng minh rằng: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12.
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
câu 1 :có hay ko một số nguyên tố mà khi chia cho 12 mà dư 9?
câu 2:Chứng minh rằng :trong 3 số nguyên tố lớn hơn 3 ,luôn tồn tại hai số nguyên tố ma tổng hoăch hiệu của chúng chia hết cho 12.