Ta có :
\(x^{4n+2}+2x^{2n+1}+1=\left(x^{2n+1}\right)^2+2x^{2n+1}+1==\left(x^{2n+1}+1\right)^2\)
Vì \(x^{2n+1}+1⋮x+1\forall x;n\in Z\) nên \(\left(x^{2n+1}+1\right)^2⋮\left(x+1\right)^2=\forall x;n\in Z\)
Hay \(x^{4n+2}+2x^{2n+1}+1⋮x^2+2x+1\)
Ta có :
\(x^{4n+2}+2x^{2n+1}+1=\left(x^{2n+1}\right)^2+2x^{2n+1}+1==\left(x^{2n+1}+1\right)^2\)
Vì \(x^{2n+1}+1⋮x+1\forall x;n\in Z\) nên \(\left(x^{2n+1}+1\right)^2⋮\left(x+1\right)^2=\forall x;n\in Z\)
Hay \(x^{4n+2}+2x^{2n+1}+1⋮x^2+2x+1\)
Chứng minh rằng:
a. \(x^{10}-10x+9\)chia hết cho \(x^2-2x+1\)
b. \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n-2}\)chia hết cho \(x^2+1\)
c. \(\left(x+1\right)^{2n}-x^{2n}-2x-1\)chia hết cho \(x\left(x+1\right)\left(2x+1\right)\)
Bạn nào giải nhanh đúng mình tick cho nha ^ ^.
chứng minh rằng \(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\) xác địnhvới mọi a;x
Chứng Minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến:
a)\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\\ \)
\(b)\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35\)
Chứng minh rằng phân thức
\(A=\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)có nghĩa với mọi a, x và không phụ thuộc vào x
Chứng minh rằng các phương trình sau có vô số nghiệm:
a) \(\left(x-1\right)^2+\left(x+3\right)^2=2\left(x\right)+2\left(x-1\right)+2x+1\)
Cho các số x, y thoả mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\)
Chứng minh rằng \(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=-1\)
Cho \(x=\frac{9m^2-4n^2-p^2}{8np}\)
\(y=\frac{\left(2n-p+3m\right)\left(2n-p-3m\right)}{3\left(4n^2+p^2-9m^2+4np\right)}\)
Tính \(Q=\left(6xy+1-2x-3y\right)^5\)
cho n thuộc N.
\(Q=\frac{\left(x^2+n\right)\left(1+n\right)+n^2x^2+1}{\left(x^2-n\right)\left(1-n\right)+n^2x^2+1}\)
chứng minh rằng Q không phụ thuộc vào giá trị của x và Q>0
chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến
\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\)