nhóm 4 số đầu tiên vs nhau rồi cứ thế mà đtặ chung
1 + 2 + 22 + ... + 2120
= ( 1 + 2 + 22 + 23 ) + ( 24 + 25 + 26 + 27 ) + ... + ( 2117 + 2118 + 2119 + 2120 )
= 15 + 24(1+2+22+23) + ... + 2117(1+2+22+23)
= 15.(24+25+...+2117) chia hết cho 15
=> đpcm
nhóm 4 số đầu tiên vs nhau rồi cứ thế mà đtặ chung
1 + 2 + 22 + ... + 2120
= ( 1 + 2 + 22 + 23 ) + ( 24 + 25 + 26 + 27 ) + ... + ( 2117 + 2118 + 2119 + 2120 )
= 15 + 24(1+2+22+23) + ... + 2117(1+2+22+23)
= 15.(24+25+...+2117) chia hết cho 15
=> đpcm
Chứng minh rằng:
c) (1+2+2^2+2^3+...+2^120) chia hết cho 3
d) (1+2+2^2+2^3+...+2^120) chia hết cho 15
Chứng minh rằng B=2+2^2+2^3+2^4+...+2^120 cùng chia hết cho 7; 15 và 31
cho A bằng 2 mũ 1 + 2 mũ 2 +2 mũ 3 + ..... + 2 mũ 120
chứng minh rằng A chia hết cho 7
chứng minh rằng A chia hết cho 31
chứng minh rằng A chia hết cho 217
Chứng minh rằng:
a) (1+5+52+53+...529)chia hết cho 6
b) (1+3+3^2+3^3+...+3^29) chia hết cho 13
c) (1+2+2^2+2^3+...+2^120) chia hết cho 3
d) (1+2+2^2+2^3+...+2^120) chia hết cho 15
Cho A = \(\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\) . Chứng minh rằng A là số tự nhiên chia hết cho 15
1/ chứng minh rằng : 2^n+3 +2^n+1 +2^n chia hết cho 11
2/ chứng minh rằng : 2.3^n+1 +3^n+2 chia hết cho 5
3/ chứng minh : 3^15 +3^14 +3^12 chi hết cho 57
Cho A = 2+2 mũ 2+2 mũ 3+......+2 mũ 119 + 2 mũ 120
a) Chứng minh rằng A chia hết cho 3
b) Chứng minh rằng A chia hết cho 7
Cho biểu thức A=\(\left(2015^{2016}-1\right)\left(2015^{2016}+1\right)\)
1.Chứng minh rằng A chia hết cho 4
2.Chứng minh rằng A chia hết cho 12
Chứng minh rằng tích \(\left(a+1\right)\times\left(3\times a+2\right)\)) luôn chia hết cho 2 với mọi a thuộc N