Bài 1 : Tìm các số tự nhiên \(x\) thoả mãn : \(2^x+3^x=35\)
Bài 2 : Tìm \(x;y\inℤ^+\) thoả mãn : \(x!+y!=\left(x+y\right)!\)
Bài 3 : Chứng minh rằng phương trình sau không có nghiệm nguyên :
\(x^{17}+y^{17}=19^{17}\)
Cho x, y, z là những số nguyên thỏa mãn đẳng thức
\(\left(x-y\right)\left(y-z\right)\left(z-x\right)=x+y+z\). Chứng minh rằng \(x+y+z⋮27\)
Cho các số thực không âm x,y,z thoả mãn \(x+y+z=3.\).
Chứng minh rằng \(\left(x-1\right)^3+\left(y-1\right)^3+\left(z-1\right)^3\ge-\frac{3}{4}\)
1) Cho x,y,z>0 thoả mãn : xyz<=1. Chứng minh rằng: \(\frac{x\left(1-y^3\right)}{y^3}\)+ \(\frac{y\left(1-z^3\right)}{z^3}\)+\(\frac{z\left(1-x^3\right)}{x^3}\)>=0
2) Cho x, y, z là các số thực dương thỏa mãn x ≥ z. CMR: xz /(y^2 + yz) + y^2 / (xz + yz) + (x + 2z)/(x + z) ≥ 5/2
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
Cho các số dương x,y,z thoả mãn: \(xy+yz+zx=3\) . Chứng minh rằng:
\(\frac{x}{3-x^2}+\frac{y}{3-y^2}+\frac{z}{3-z^2}=\frac{12\text{ }xyz}{\left(3-x^2\right)\left(3-y^2\right)\left(3-z^2\right)}\)
Cho \(x\), \(y\), \(z\) là 3 số khác 0 thoả mãn \(x\) \(+\) \(y\) \(+\) \(z\) \(=0\). Chứng minh rằng:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)=\(\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)
a) Chứng minh với mọi số thực a,b,c a cs \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
Mọi người giúp em với , em cần gấp =() :
Câu 1 : Tìm số tự nhiên \(n\)để \(5^{2n^2-6n+2}-12\)là số nguyên tố
Câu 2 : Chứng minh rằng không tồn tại các bộ 3 số nguyên \(\left(x;y;z\right)\)thỏa mãn đẳng thức : \(x^4+y^4=7z^4+5\)
Câu 3 : Chứng minh rằng \(\left(a,5\right)=1\)thì \(a^{8n}+3a^{4n}-4\)chia hết cho 100.
Câu 4 : Có hay không số nguyên tố \(p\) thỏa mãn \(8p-1;8p+1\)cũng là số nguyên tố ? Giải thích ?
Câu 5 : Tìm \(n\)nguyên sao cho \(s=n^4+10n^3+40n^2+78n+63\)là số chính phương
Câu 6 : Tìm tất cả số tự nhiên \(n\)để \(n^3-n^2-7n+10\)là số nguyên tố .