Gọi (2n + 1,6n + 5) = d (d \(\in\)N)
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}
Mà d là lớn nhất nên d = 2
Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2
=> (2n + 1,6n + 5) = 1
Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
Ủng hộ mk nha !!! ^_^
Gọi d là Ưcln của 2n + 1 và 6n + 5
Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d
Mà ưc của 2 là 1 => d = 1
VậY (đpcm_)
Giả sử UCLN của 2n + 1 và 6n + 5 là : H
Ta có : 2n + 1 chia hết cho H và 6n + 5 chia hết cho H
=> 3( 2n + 1 ) chia hết cho H và 6n + 5 => chia hết cho H
=> 6n + 3 chia hết cho H và 6n + 5 => chia hết cho H
Vậy nên ( 6n + 5 ) - ( 6n + 3 ) chia hết cho H => H chia hết cho 2
Ư ( 2 ) là 1 => H = 1
Vậy .............
Gọi (2n + 1,6n + 5) = d (d ∈N)
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
hay 2 chia hết cho d => d ∈Ư(2) => d ∈{-2;-1;1;2}
Mà d là lớn nhất nên d = 2
Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2
=> (2n + 1,6n + 5) = 1
Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
Gọi h là UC cua 2n+1 va 6n+5
=>2n+1 chia hết h và 6n+5 chia het h
=>6n+5 - 6n+3 chia het h
=>2 chia het =U 2 ={ 1, 2 }
Khi ấy h lớn nhất
Nên h =1
Vậy 2n+1 và 6n +5 là hai số nguyên tố cùng nhau
https://www.youtube.com/watch?v=cFZDEMTQQCs