Bài 2: Tỉ số lượng giác của góc nhọn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Etermintrude💫

Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào số đo góc nhọn \(\alpha\) :

B= \(\cos^2\alpha+\cos^2\alpha.\sin^2\alpha+\sin^4\alpha\)

C= \(\frac{1}{1+\sin\alpha}+\frac{1}{1-\sin\alpha}-2\tan^2\alpha\)

Nguyễn Việt Lâm
24 tháng 8 2020 lúc 22:17

\(B=cos^2a+sin^2a\left(cos^2a+sin^2a\right)=cos^2a+sin^2a=1\)

\(C=\frac{1-sina+1+sina}{\left(1+sina\right)\left(1-sina\right)}-2tan^2a=\frac{2}{1-sin^2a}-2tan^2a\)

\(=\frac{2}{cos^2a}-\frac{2sin^2a}{cos^2a}=\frac{2\left(1-sin^2a\right)}{cos^2a}=\frac{2cos^2a}{cos^2a}=2\)


Các câu hỏi tương tự
Hoàng Đức
Xem chi tiết
Trần Văn Tú
Xem chi tiết
Sonyeondan Bangtan
Xem chi tiết
Hoàng Ngọc Anh
Xem chi tiết
Đinh Đại Thắng
Xem chi tiết
Moon Jim Kim
Xem chi tiết
Đinh Trí Gia BInhf
Xem chi tiết
Limited Edition
Xem chi tiết
Cần Phải Biết Tên
Xem chi tiết