\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n^2-3n+2n-6\right)\)
\(=n^2+5n-n^2+3n-2n+6\)
\(=\left(n^2-n^2\right)+\left(5n+3n-2n\right)+6\)
\(=6n+6\)
\(=6\left(n+1\right)⋮6\forall n\in Z\left(đpcm\right)\)
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)\)
Ta thấy \(6\left(n+1\right)⋮6\forall n\in Z\Rightarrow n\left(n+5\right)-\left(n-3\right)\left(n+2\right)⋮6\forall n\in Z\)