Chứng minh rằng:\(\frac{51}{2}+\frac{52}{2}+...+\frac{100}{2}=1.3.5...99\)
CM : \(1.3.5.....99=\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}\)
Chứng minh rằng :
\(\frac{51}{2}\). \(\frac{52}{2}\). .... .\(\frac{100}{2}\)= 1.3.5. ... .99
So sánh: 1.3.5....99 với \(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}....\frac{100}{2}\)
Chứng tỏ rằng:
1.3.5...99=\(\frac{51}{2}.\frac{52}{2}...\frac{100}{2}\)
Chứng tỏ rằng: \(1.3.5...99=\frac{51}{2}.\frac{52}{2}...\frac{100}{2}\)
Bài Toán :
CMR : \(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}=1.3.5.....99\)
So sánh : A = \(1.3.5.....99\) với B = \(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}\)
So sánh A = \(1.3.5.....99\) với B = \(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}\)