Bạn nào chịu khó giải cho mình bài này với
Chứng minh rằng \(A=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+..+\frac{1}{\sqrt{400}}< 38\)
Hộ mình vs thank
Chứng minh rằng
A= \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{400}}< 38\)
Chứng minh:
\(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{400}}< 38\)
Chứng minh rằng
a) Với mọi số nguyên dương n có \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+..+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
b) \(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}< \sqrt{2017}+\sqrt{2018}\)
Hộ mình vs
Chứng minh rằng:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)
mk cần gấp lắm
chứng minh rằng \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)với \(n\inℕ^∗\)\
Áp dụng tính tổng
\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
làm hộ mình với. đang cần gấp
rút gọn
1/\(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)
2/\(\frac{4}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}-3}\)
Chứng minh A< 1. Biết
\(A=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{399\sqrt{400}+400\sqrt{399}}\)
Bài 1: Tính giá trị của biểu thức:\(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 2: Chứng minh rằng các biểu thức sau có giá trị là số nguyên
A = \(\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
B = \(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)