Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Tài Bảo Châu

Chứng minh rằng

 \(\frac{1}{4028}< \left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2013}{2014}\right)^2< \frac{1}{2015}\)

Pham Van Hung
26 tháng 3 2019 lúc 17:41

Đặt: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.....\frac{2013}{2014}\) (1)

Ta thấy \(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\)

Do đó nhân vế với vế, ta được: 

\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\)

\(\Rightarrow A^2< \frac{1}{2015}\)

Mặt khác, \(A>\frac{1}{2}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\) (2)

Từ (1) và (2), ta được: 

\(A^2>\frac{1}{4}.\left(\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\right)\)

\(\Rightarrow A^2>\frac{1}{4}.\frac{3}{2015}\Rightarrow A^2>\frac{3}{8060}>\frac{1}{4028}\)


Các câu hỏi tương tự
nguyễn khánh linh
Xem chi tiết
rang Hwa
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Mèo Méo
Xem chi tiết
Linh pink
Xem chi tiết
rang Hwa
Xem chi tiết
Thương Mai
Xem chi tiết
Dương Như Ngọc
Xem chi tiết
vũ mạnh dũng
Xem chi tiết