\(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Vậy ....
\(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Vậy ....
Chứng minh rằng
\(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)với \(n\inℕ^∗\)
Áp dụng cho \(S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
chứng minh rằng 18<S<19
chứng minh rằng \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)với \(n\inℕ^∗\)\
Áp dụng tính tổng
\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
Chừng minh rằng \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\) vời \(n\inℕ^∗\)
áp dụng chứng minh rằng \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}< 100\)
1.Chứng minh rằng: \(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}>\frac{9}{4}\)
2.Chứng minh rằng với mọi n thuộc N và n>2 thì nn+1>(n+1)n
Với n là số nguyên dương Chứng minh rằng
\(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+....+\frac{1}{\sqrt{n^2+n}}< 1\)
Chứng minh bất đẳng thức
Với n thuộc N, chứng minh \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n+1}}\)
Sử dụng kết quả trên, chứng minh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}< 2.\sqrt{2012}\)
Chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với n thuộc N*
Chứng minh rằng với mọi số nguyên dương n ta đều có:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+\frac{1}{5\sqrt{4}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Bài 1: Chứng minh rằng với mọi số nguyên dương n, ta có:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{(n+1)\sqrt{n}}<2\)
Bài 2: Với mọi n thuộc N, \(n\geq 3\), chnứng minh:
\(\frac{1}{3(1+\sqrt{2})}+\frac{1}{5(\sqrt{2}+\sqrt{3})}+...+\frac{1}{(2n+1)(\sqrt{n}+\sqrt{n+1})}< \frac{1}{2}\)
cho \(P=\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\frac{1}{\sqrt{n^2+3}}+...+\frac{1}{\sqrt{n^2+n}}\)
chứng minh rằng P<1