Chứng minh rằng :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}_{ }\)
Chứng minh: A=\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2005^3}+\frac{1}{2006^3}<\frac{1}{4}\)
CMR:
\(\frac{1}{2^3}+\frac{1}{3^3}+.....+\frac{1}{2005^3}+\frac{1}{2006^3}<\frac{1}{15}\)
cho B =\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)chứng minh rằng B < \(\frac{1}{2}\)
cmr:
\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2005^3}+\frac{1}{2006^3}<\frac{1}{4}\)
giúp mk vs nhak
C=\(\frac{\frac{2006}{2}}{\frac{2006}{1}}\) +\(\frac{2006}{\frac{3}{\frac{2005}{2}}}\) +\(\frac{2006}{\frac{4}{\frac{2004}{3}}}\) +...+\(\frac{2006}{\frac{2007}{\frac{1}{2006}}}\)
Cho \(P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
Chứng minh rằng \(P<\frac{1}{2}\)
1.chứng minh rằng : \(\frac{1}{2}!+\frac{2}{3}!+\frac{3}{4}!+...+\frac{99}{100}!< 1\)
2. Chứng minh rằng :\(\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+...+\frac{99.100-1}{100}< 2\)
Chứng minh rằng
B=\(\left[1.2.3.4.5.6...2006\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}\right)\right]⋮2007\)