Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Passed

Chứng minh rằng  \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)

 

Nguyễn Thị Quỳnh
5 tháng 8 2015 lúc 13:14

Đặt A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

Ta có : A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

             =\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

             =\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

             =\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

             =\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)

SKT_ Lạnh _ Lùng
12 tháng 9 2016 lúc 17:59

Đặt A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

Ta có : A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

             =\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

             =\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

             =\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

             =\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)


Các câu hỏi tương tự
Phan Tuấn Đức
Xem chi tiết
Lê Nguyễn Ngân Anh
Xem chi tiết
Thảo Nhi Nguyễn Trần
Xem chi tiết
I miss my love
Xem chi tiết
Xmaf
Xem chi tiết
Thanh Nguyen
Xem chi tiết
Trương Quỳnh Hoa
Xem chi tiết
Alex Queeny
Xem chi tiết
Lê Hà Phương
Xem chi tiết