chứng minh : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}=\frac{1}{1002}+.....+\frac{1}{2002}\)
Cho \(\frac{x^{\text{4}}}{a}+\frac{y^{\text{4}}}{b}=\frac{1}{a+b};x^2+y^2=1\)
Chứng minh rằng:\(\frac{x^{200\text{4}}}{a^{1002}}+\frac{y^{200\text{4}}}{b^{1002}}=\frac{2}{\left(a+b\right)^{102}}\)
C=\(\frac{2012}{1001}+\frac{2012}{1002}+\frac{2012}{1003}+...+\frac{2012}{2000}\)
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) và \(x^2+y^2=1\) Chứng minh rằng: \(\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{2}{\left(a+b\right)^{102}}\)
Chứng minh rằng 1 < A < 2 :
\(A=\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+...+\frac{1001}{1000^2+1000}\)
$A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{5.6}+...+\frac{2011}{1999.2000}$
$B=\frac{2012}{1001}+\frac{2012}{1002}+\frac{2012}{1003}+...\frac{2012}{2000}$
Tìm x,biết:
a)\(\frac{x+1}{999}+\frac{x+2}{998}=\frac{x+3}{997}+\frac{x+4}{996}\)
b)\(\frac{x+1}{1001}+\frac{x+2}{1002}=\frac{x+3}{1003}+\frac{x+4}{1004}\)
c)\(|x|-\frac{15}{2}=\frac{15}{4}\)
d)\(|\frac{3}{4}-x|+1|=\frac{3}{2}\)
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)và \(x^2+y^2=1\)
Chứng minh : \(\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\)
Tìm giá trị nguyên của x và y thỏa mãn: 3xy+x-y=1
CMR: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}=\frac{1}{1002}+...+\frac{1}{2002}\)