dcba = 1000d + 100c + 10b + a = (1000d + 100c + 8b) + (a + 2b)
Ta có 1000d + 100c + 8b chia hết cho 4 => a+2b chia hết cho 4 => dcba chia hết cho 4
dcba = 1000d + 100c + 10b + a = (1000d + 100c + 8b) + (a + 2b)
Ta có 1000d + 100c + 8b chia hết cho 4 => a+2b chia hết cho 4 => dcba chia hết cho 4
cho A = dcba ( a thuộc N )
a) chứng minh A chia hết cho 4 khi và chỉ khi ( 2b + a ) chia hết cho 4
b) chứng minh a chia hết cho 8 khi và chỉ khi ( a+ 2b +4c ) chia hết cho 8
cho A = dcba ( a thuộc N )
a) chứng minh A chia hết cho 4 khi và chỉ khi ( 2b + a ) chia hết cho 4
b) chứng minh a chia hết cho 8 khi và chỉ khi ( a+ 2b +4c ) chia hết cho 8
cho số tự nhiên A=dcba
chứng minh rằng A chia hết cho 4 khi và chỉ khi a+2.b chia hết cho 4
Cho N = dcba (gạch trên đầu dcba) , chứng minh rằng:
a/ N chia hết cho 4 <=> a+2b chia hết cho 4
b/ N chia hết cho 8 <=> a+2b+4c chia hết cho 8
c/ N chia hết cho 16 <=> a+2b+4c+8d chia hết cho 16 (b chẵn)
Chứng minh rằng a+2b chia hết cho 3 khi và chỉ khi b+2a chia hết cho 3.
Chứng minh rằng: a+2b Chia hết cho 3 khi và chỉ khi b+2a chia hết cho 3
Cho A = dcba
Chứng minh rằng nếu (a + 2b) chia hết cho 4 thì A chia hết cho 4.
chứng minh rằng 5a + 2b chia hết cho 17 khi và chỉ khi 9a +7b chia hết cho 17
Cho hai số nguyên a và b . Chứng minh rằng 5a+2b chia hết cho 17 khi và chỉ khi 9a+7b chia hết cho 17