Giả sử \(\sqrt{10}\)là số hữu tỉ \(\Rightarrow\sqrt{10}=\frac{a}{b}\) ( vs \(\frac{a}{b}\)là phân số tối giản, \(a,b\in Z;b\ne0\))
Ta có \(\frac{a}{b}=\sqrt{10}\Rightarrow\left(\frac{a}{b}\right)^2=10\Rightarrow\frac{a^2}{b^2}=10\Rightarrow a^2=10b^2\)
=> \(a^2\) là số chẵn ( vì 10 là số chẵn)
\(\Rightarrow a\) chẵn ( do căn bậc hai của 1 số chẵn là số chẵn) (1)
\(\Rightarrow a=2k\left(k\in Z\right)\)
Thay a = 2k vào \(a^2=10b^2\) ta có
\(\left(2k\right)^2=10b^2\)
\(\Rightarrow4k^2=10b^2\)
\(\Rightarrow2k^2=5b^2\)
\(\Rightarrow5b^2\) là số chẵn
\(\Rightarrow b^2\) là số chẵn
\(\Rightarrow b\) chẵn ( do do căn bậc hai của 1 số chẵn là số chẵn ) (2)
Từ (1) và (2) => Phân số \(\frac{a}{b}\) chưa tối giản vs giả thiết đưa ra
Vậy \(\sqrt{10}\) là số vô tỉ
Có j sai sót mong bỏ qua
~ HAPPY NEW YEAR ~