CHTT nha
Các bạn trên olm tick ủng hộ mình nha
CHTT nha
Các bạn trên olm tick ủng hộ mình nha
chứng minh rằng :\(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+.........+\frac{2004}{4^{2004}}
Chứng tỏ rằng ; B= \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-....-\frac{1}{2004^2}\)>\(\frac{1}{2004}\)
Chứng tỏ rằng :\(B=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{3^2}-...-\frac{1}{2004^2}>\frac{1}{2004}\)
Chứng minh
B = \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2004^2}\) > \(\frac{1}{2004}\)
cho B =\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)chứng minh rằng B < \(\frac{1}{2}\)
Chứng minh rằng
\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}<0,2\)
Chứng minh rằng
\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-......+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
Ai làm nhanh mik tick
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) và \(x^2+y^2=1\) Chứng minh rằng: \(\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{2}{\left(a+b\right)^{102}}\)
A=\(1+\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2004^2}\)
chứng minh a>1/2004