\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
Do n lẻ nên n=2k+1 (k thuộc N)
=>\(A=\left(n-1\right)\left(n+1\right)\left(n+3\right)=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)=2k.2\left(k+1\right).2\left(k+2\right)=8k\left(k+1\right)\left(k+2\right)\) chia hết cho 8
Vậy ta có đpcm