vì a>2, b>2 => \(2-a0\Rightarrow\left(2-a\right)\left(b-2\right)
vì a>2, b>2 => \(2-a0\Rightarrow\left(2-a\right)\left(b-2\right)
a)chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b)chứng minh rằng ab+ba chia hết cho 11
a,Chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b,Chứng minh rằng ab + ba chia hết cho 11
c,Chưnhs minh aaa luôn chia hết cho 37
d, Chứng minh aaabbb luôn chia hết cho 7
cho a,b,c thuộc Z biết : ab - ac + bc - c^2 = -1 Chứng minh rằng 2 số a và b đối nhau
Cho a;b thuộc N* thỏa mãn (a;b)=1 . Chứng minh rằng \(\left(a^2+b^2:ab\right)=1\)
1. Chứng minh rằng với mọi n thuộc N thì 60n+45 chia hết cho 15 nhưng không chia hết cho 30.
2. Cho a,b thuộc N. Hỏi số ab(a + b ) có tận cùng bằng 9 không ?
3. Cho n thuộc N. Chứng minh rằng 5n - 1 chia hết cho 4.
4. Chứng minh rằng :
a, ab + ba = 11.
B, ab - ba chia hết cho 9 với a>b.
5. Cho a,b thuộc N và a - b chia hết cho 7. Chứng minh rằng 4a + 3b chia hết cho 7.
Các bạn giúp tớ làm 2 câu này nhé :
a)Chứng tỏ rằng ab (a+b) chia hết cho 2(a;b thuộc N).
b)Chưng minh rằng ab + ba chia hết cho 11.
chứng tỏ ab(a+b) chia hết cho 2 (a;b thuộc N )
chướng minh rằng ab + ba chia hết cho 11
cho a,b,c thuộc N . Biết tích ab là số liền sau của tích cd và a+b=c+d . Chứng minh rằng a=b
Chứng minh rằng: Nếu ab=c^2 (a,b,c thuộc N sao) và ƯCLN(a,b) = 1 thì a và b đều là các số chính phương