VT = ( a + b )(a^2 - ab + b^2) + ( a- b)(a^2 + ab + b^2)
= a^3 + b^3 + a^3 - b^3
= 2a^3
=VP
=> ĐPCM
VT = ( a + b )(a^2 - ab + b^2) + ( a- b)(a^2 + ab + b^2)
= a^3 + b^3 + a^3 - b^3
= 2a^3
=VP
=> ĐPCM
17 :Chứng minh rằng
( a + b ) . ( a^2 - ab + b^2 ) + ( a - b ) . ( a^2 + ab + b^2 ) = 2a^3a^3 + a^3 = ( a+ b ). ( ( a - b )^2 + ab )( a^2 + b^2 ).( c^2 + d^2 ) = ( ac + bd )^2 + ( ad - bc )^2Chứng minh rằng:(a+b)(a2_ab+b2)+(a-b)(a2+ab+b2)=2a3
chứng minh rằng:
a) (a-1)(a-2) + (a-3)(a+4) - (2a^2 + 5a - 34)= -7a +24
b) (a+c)(a-c) - b(2a-b) - (a-b+c)(a-b-c) = 0
c) (a - b)(a^2 +ab+b^2) - (a+b)(a^2-ab+b^2) = - 2b^3
m.n giúp mk vs, mk đang rất gấp...tks trc nạ.!
Chứng minh : (a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2) = 2a^3
Chứng minh rằng:
a) (a+b)(a2 - ab + b2) + (a-b)(a2 + ab + b2) = 2a3
b) a3 + b3 = (a+b)[ (a-b)2 + ab ]
cho a+b+c=2;chứng minh rằng (2-c)(b-c)/2a+bc+(2-a)(c-a)/2b+ca+(2-b)(a-b)/2c+ab lớn hơn hoặc bằng 0
chứng minh các đẳng tức sau:
a,(a-1). (a-2)+(a-3). (a-4)-(2a^2+5a-34)=24-7a
b,(a-b).(a^2+ab+b^2)-(a+b).(a^2-ab+b^2)= -2b^3
chứng minh các đẳng tức sau:
a,(a-1). (a-2)+(a-3). (a-4)-(2a^2+5a-34)=24-7a
b,(a-b).(a^2+ab+b^2)-(a+b).(a^2-ab+b^2)= -2b^3
Cho 2 số hữu tỉ a, b thỏa mãn đẳng thức a^3b + ab^3 + 2a^2b^2 + 2a + 2b + 1 = 0. Chứng minh rằng 1 - ab là bình phương của một số hữu tỉ