giả sử a\(\ge\)b không làm mất đi tính chất tổng quát của bài.
\(\Rightarrow\)a = m + b [ m \(\ge\)0]
ta có :
\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}\)\(\frac{b}{b+m}=1+\frac{m+b}{b+m}\)\(=1+1=2\)
\(vậy\)\(\frac{a}{b}+\frac{b}{a}\ge2(ĐPCM)\)
giả sử a\(\ge\)b không làm mất đi tính chất tổng quát của bài.
\(\Rightarrow\)a = m + b [ m \(\ge\)0]
ta có :
\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}\)\(\frac{b}{b+m}=1+\frac{m+b}{b+m}\)\(=1+1=2\)
\(vậy\)\(\frac{a}{b}+\frac{b}{a}\ge2(ĐPCM)\)
Chứng minh rằng a/b + b/a lớn hơn hoặc bằng 2 với mọi a,b thuộc N*
Chứng minh rằng a/b + b/a lớn hơn hoặc bằng 2 với mọi a,b thuộc N*
a, Chứng minh rằng (a-1) x (a-2) x (a-3) x (a-4) + 1 lớn hơn hoặc bằng 0 với mọi a thuộc R
b, Cho x + 2 x y = 5 . Chứng minh rằng x2 + y2 lớn hơn hoặc bằng 5
Với mọi số thực a, b. Chứng minh rằng: |a| + |b| lớn hơn hoặc bằng |a + b|
Chứng minh rằng với mọi x, y thuộc tập hợp Q thì:
a) Ix + yI bé hơn hoặc bằng IxI + IyI
b) Ix - yI lớn hơn hoặc bằng IxI - IyI
Chứng minh rằng:
a)213^6.197-213^7.33 chia hết cho 8
b)2^54.54^24.2^10 chia hết cho 72^63
c)10^n chia hết cho 45 dư 10 với mọi n lớn hơn 1 hoặc bằng 1; n thuộc N
giúp mình với
chứng minh rằng với mọi a,b thuộc q thì gttd của a trừ gttd của b nhỏ hơn hoặc bằng gttd (a-b)
nhanh thì mình tick nha
a)Cho hàm số f(x)=ax^2+bx+c là các số hữu thỉ .Chứng tỏ rằng f(-2),f(3)lớn hơn hoặc bằng 0 biết rằng 13a+b+2c=0
b)Cho hàm số f(x) xác định với mọi x thuộc R .Biết rằng với mọi x ta đều có f(x)+3*f(1/x)=x^2
chứng minh rằng a^2+b^2 lớn hơn hoặc bằng 2ab