Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NGô Văn Trường

Chứng minh rằng: A=22011969+11969220+69220119 chia hết cho 102

SKT_ Lạnh _ Lùng
9 tháng 4 2016 lúc 8:57

102

Toán lớp 7Lũy thừaChia hết và chia có dư

Trần Thị Loan  Quản lý 15/08/2015 lúc 22:15

102 = 2.3.17

+) Chứng minh A chia hết cho 2

$220^{119^{69}}=\left(....0\right)$22011969=(....0)

$69^{220}$69220 lẻ => $119^{69^{220}}=\left(....9\right)$11969220=(....9)

220119 tận cùng là 0 => kết qỉa là số chẵn => $69^{220^{119}}=\left(....1\right)$69220119=(....1)

=> A có tận cùng là chữ số 0 => A chia hết cho 2      (1)

+) A chia hết cho 3

220 đồng dư với 1 (mod 3) => $220^{119^{69}}$22011969 đồng dư với 1 mod 3

119 đồng dư với -1 mod 3 => $119^{69^{220}}$11969220 đồng dư với $\left(-1\right)^{69^{220}}=-1$(−1)69220=−1 (mod 3)

69 chia hết cho 3 nên $69^{220^{119}}$69220119 chia hết cho 3  hay $69^{220^{119}}$69220119 đồng dư với 0 (mod 3)

=> A đồng dư với 1 +(-1) + 0 = 0 (mod 3) =>A chia hết cho 3      (2)

+) A chia hết cho 17

220 đồng dư với (-1) mod 3 =>  $220^{119^{69}}$22011969 đồng dư với $\left(-1\right)^{119^{69}}=-1$


Các câu hỏi tương tự
tranthithao tran
Xem chi tiết
Anh Thư
Xem chi tiết
tranthithao tran
Xem chi tiết
lion anh
Xem chi tiết
bich lien
Xem chi tiết
Lâm Hà Phúc Ẩn
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
Bùi Đinh Huy
Xem chi tiết
Bui Cam Lan Bui
Xem chi tiết