Bài 1: Chứng minh rằng
a) P = (a+5)(a+8) chia hết cho 2
b) Q = ab(a+b) chia hết cho 2
Bài 2: cho a thuộc N. chứng minh a2-8 không chia hết cho 5
Bài 3: Chứng minh rằng n5-n chia hết cho 10
1)chứng ninh rằng
a)\(n\cdot\left(n^2+1\right)\cdot\left(n^2+4\right)\)chia hết cho 5
b)\(9\cdot10^n+18\)chia hết cho 27 với mọi n thuộc N
2)Nếu n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5
3)Tìm số tự nhiên n để \(3^n+63\)chia hết cho 72
Bài 1)a)Chứng minh rằng: với mọi số nguyên n ta luôn có: \(\left(n^3-n\right)\)chia hết cho 6
b)Với mọi số nguyên n ta luôn có \(\left(n^5-n\right)\)chia hết cho 30
c)cho a,b,c là các số nguyên. CMR \(\left(a^3+b^3+c^3\right)\)chia hết cho 6 <=> (a+b+c) chia hết cho 6
* chứng minh rằng
a) [a3+(a+1)3+(a+2)3] chia hết cho 3, với mọi a thuộc N
b) (n5- n) chia hết cho 5 , với mọi n thuộc N
chứứng minh rằng với mọi n nguyên dương đều có :
\(5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)\)chia hết cko 91
Cho \(A=2\left(1^{2015}+2^{2015}+3^{2015}+...+n^{2015}\right)\). Biết n là số nguyên dương.
Chứng minh: A chia hết cho n(n+1)
Làm đc mình cho 5* nha
1/chứng minh rằng nếu \(a^2+b^2\)chia hết cho 3 thì cả a và b đều chia hết cho 3
2/ chứng minh rằng \(1^n+2^n+3^n+4^n\)chia hết cho 5 khi và chỉ khi n không chia hết cho 4 ,n thuộc N*
3/ tìm tất cả số tự nhiên n để
a/ \(3^n+63\)chia hết cho 72
b/ \(2^{2n}+2^n+1\)chia hết cho 7
Cho \(n\) là một số không chia hết cho \(3\). Chứng minh rằng \(A=5^{2n}+5^n+1\) chia hết cho \(31\).
Chứng minh rằng với mọi số nguyên n ta có : A = \(1^5+2^5+3^5+......+n^5\) chia hết cho B\(=1+2+3+....+n\)
Ai nhanh mình tick ạ