13 + 23 + 33 + ... + 1003
= (1 + 2 + 3 + ... + 100) x (12 + 22 + 32 +.....+ 1002)
\(\Rightarrow\) ( 1 + 2 + 3 + ... + 100 ) x ( 12 + 22 + 32 + ... + 1002) chia hết cho 1 + 2 + 3 + ... +100
Vậy 13 + 23 + 33 + ... + 1003 sẽ chia hết cho 1 + 2 + 3 + .... + 100
Em chỉ mới lớp 7 thôi nên có thể sẽ có sai sót nhưng em mong Le vi dai sẽ tick cho em
Ta có: \(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)=101.50\)
Để chứng minh \(A\) chia hết cho \(B\) , ta cần chứng minh \(A\) chia hết cho \(50\) và \(101\)
Ta có: \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(50^3+51^3\right)\)
\(=\left(1+100\right)\left(1^2+100+100^2\right)+\left(2+99\right)\left(2^2+2.99+99^2\right)+...+\left(50+51\right)\left(50^2+50.51+51^2\right)\)
\(A=101\left(1^2+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)\)
chia hết cho \(101\) \(\left(1\right)\)
Lại có: \(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(50^3+100^3\right)\)
Mỗi số hạng trong dấu ngoặc đều chia hết cho \(50\) nên \(A\) chia hết cho \(50\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(A\) chia hết cho \(101\) và \(50\) hay \(A\) chia hết cho \(B\)