Chứng minh rằng căn bậc hai của (14+4)(24+4)...(n4+4)/2 là số vô tỉ
Cho tam thức bậc hai f(x) = x^2 - 20x + 11.
a) Tìm tất cả các số hữu tỉ x sao cho căn f(x) là một số hữu tỉ.
b) Tìm tất cả các số nguyên dương x sao cho căn f(x) là một số nguyên dương.
Cho a , b , c là ba số hữu tỉ thỏa mãn abc = 1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}.\)Chứng minh rằng một trong ba số a , b , c là bình phương của một số hữu tỉ .
Cho a,b,c là các số hữu ti khác 0 thỏa mãn a+b+c=0.Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) là bình phương của một số hữu tỉ
Chứng minh căn bậc 2 của 2 là số vô tỉ
Cho a,b,c là các số hữu tỉ thỏa mãn điều kiện ab+bc+ca= 1. Chứng minh rằng biểu thức \(Q=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)là bình phương của một số hữu tỉ
CHỨNG MINH CĂN BẬC 2 LÀ SỐ VÔ TỈ?
Cho 2 số hữu tỉ a, b thỏa mãn đẳng thức a^3b + ab^3 + 2a^2b^2 + 2a + 2b + 1 = 0. Chứng minh rằng 1 - ab là bình phương của một số hữu tỉ
cho A = a2 + b2 + c2 ; trong đó a,b là hai số tự nhiên liên tiếp và c = a.b. Chứng minh rằng: căn A là một số tự nhiên lẻ.