Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Khánh

chứng minh rằng:

a, (a+b)(a2-ab+b2) + (a-b)(a2+ab+b2) = 2a3.

b, a3+b3= (a+b)[(a-b)2+ab]

c, (a2+b2)(c2+d2)= (ac+bd)2+ (ad-bc)2

Ha Hoang Vu Nhat
10 tháng 6 2017 lúc 11:20

a, Ta có: \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

= \(a^3+b^3+a^3-b^3=a^3+a^3=2a^3\)

\(\xrightarrow[]{}\) đpcm

b, Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(\left(a-b\right)^2+ab\right)\)

\(\xrightarrow[]{}\) đpcm

c, Ta có: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(\xrightarrow[]{}\) đpcm

Nguyễn Thanh Hằng
10 tháng 6 2017 lúc 10:09
T.Thùy Ninh
10 tháng 6 2017 lúc 10:22

\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a+ab+b^2\right)=a^2+b^3+a^3-b^3=2a^3\)\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\Rightarrowđpcm\)\(c,\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+a^2d^2+b^2d^2+b^2c^2=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\Rightarrowđpcm\)


Các câu hỏi tương tự
lưu ly
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
Quinn
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
dmdaumoi
Xem chi tiết
bou99
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
Huong Tran
Xem chi tiết