giải
a) Ta có:
VP=(a+b)3−3ab(a+b)
=a3+3a2b+3ab2+b3−3a2b−3ab2
=a3+b3=VT (đpcm)
b) Ta có:
VP=(a−b)3+3ab(a−b)
=a3−3a2b+3ab2−b3+3a2b−3ab2
=a3−b3=VT (đpcm)
Áp dụng:
Với ab=12 và a+b=−7 ta có:
a3+b3=(a+b)3−3ab(a+b)
=(−7)3−3.12.(−7)=−91
a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2\)
\(=a^3+b^3\)
b: \(\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=a^3-b^3\)