1.chứng minh rằng : \(\frac{1}{2}!+\frac{2}{3}!+\frac{3}{4}!+...+\frac{99}{100}!< 1\)
2. Chứng minh rằng :\(\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+...+\frac{99.100-1}{100}< 2\)
chứng minh rằng \(50< \frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2^{100}-1}< 100\)
việt anh hoàng hay ai giải cho tui với nha
Chứng minh rằng : \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
chứng minh rằng \(\frac{1}{1}-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-............-\frac{1}{100^2}< \frac{1}{100}\)
chứng minh rằng : \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Chứng minh rằng : \(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Chứng minh rằng:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\) \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}< \frac{3}{4}\)
A= 1+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+...+\(\frac{1}{2^{100}-1}\).CHỨNG MINH RẰNG 50<A<100
Chứng minh rằng: \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-.....+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)\(< \frac{1}{50}\)