đặt A=2^4n+1
=16^n.2
16^n đồng dư với 6 (mod 10)
=>16^n.2 đồng dư với 2.6=12=2(mod 10)
A chia 10 dư 2=10k+2(k thuộc N)
đặt B=3^4n+1
=81^n.3 đồng dư với 1.3=3 ( mod 10)
=>B chia 10 dư 3=10p+3(p thuộc N)
ta có 3^2^4n+1 + 3^3^4n+1 +5
=3^10k+2 + 3^10p+3 +5
3^10 đồng dư với 1 (mod 11)
=>3^10k+2 đồng dư với 1.3^2=9(mod 11)
=>3^10p+3 đồng dư với 1.3^3=27(mod 11)
5 đồng dư với 5(mod 11)
=> 3^2^4n+1 + 3^3^4n+1 +5 đồng dư với 9+27+5=41(mod 11)
=> đề sai! phải là 2^3^4n+1 mới đúng