3^2= 9
Vậy thì sẽ là:
9/ 20.23+ 9/ 23.26+...9/77.80
cách nhau 3 bỏ 3 ra ngoài
= 3(3/20.23+...3/77.80)
=3(3/20-3/23+3/23-3/26+.....+3/77-3/80)
=3(3/20-3/80)
=3. 9/80
=27/80<1
32=9
\(\frac{3^2}{20.23}\)+\(\frac{3^2}{23.26}\)+...+\(\frac{3^2}{77.80}\)
=\(\frac{9}{20.23}\)+\(\frac{9}{23.26}\)+...+\(\frac{9}{77.80}\)
=3(\(\frac{3}{20.23}\)+\(\frac{3}{23.26}\)+...+\(\frac{3}{77.80}\))
=3(\(\frac{1}{20}\)-\(\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\))
=3(\(\frac{1}{20}-\frac{1}{80}\))
=3(\(\frac{4}{80}-\frac{1}{80}\))
=3.\(\frac{3}{80}\)
=\(\frac{9}{80}\)<1
Vậy\(\frac{9}{80}< 1\)
A=\(3 \left(\right. \frac{3}{20.23} + \frac{3}{23.26} + \frac{3}{26.29} + . . . + \frac{3}{77.80} \left.\right)\)
A\(= 3 \left(\right. \frac{1}{20} - \frac{1}{23} + \frac{1}{23} - \frac{1}{26} + \frac{1}{26} - \frac{1}{29} + . . . + \frac{1}{77} - \frac{1}{80} \left.\right)\)
\(A = 3 \left(\right. \frac{1}{20} - \frac{1}{80} \left.\right)\)
A\(= 3 \left(\right. \frac{4}{80} - \frac{1}{80} \left.\right)\)
A\(= 3. \frac{3}{80}\)
A\(= \frac{9}{80}\)
\(\frac{9}{80}<1\)
⇒A\(<1\)