Ta có: \(3^1+3^2+3^3+...+3^{2009}+3^{2010}\)
_____________________________________
Có (2010-1)/1+1=2010(số)
=\(\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
___________________________________________________________________________
Có 2010 : 3 = 670( nhóm )
=\(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
=\(\left(1+3+3^2\right)\left(3+3^4+...+3^{2008}\right)\)
=\(13\left(3+3^4+....+3^{2008}\right)\)
Vì 13 chia hết cho 13 nên \(13\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13
Hay \(3^1+3^2+3^3+...+2^{2009}+2^{2010}\)chia hết cho 13
Vậy \(3^1+3^2+3^3+...+3^{2009}+3^{2010}\)chia hết cho 13
Tick nha!!!
\(A=3^1+3^2+3^3+................+3^{2009}+3^{2010}\)
\(3A=3^2+3^3+3^4+..........+3^{2010}+3^{2011}\)
\(3A-A=3^{2011}-3^1\)
\(2A=\left(3^{2011}-3^1\right):2\)
Tick nha
Chứng minh rằng 31 + 32 + 33 + ... + 32009 + 32010 chia hết cho 13
ta có: 31 + 32 + 33 + ... + 32009 + 32010
= (31 + 32 + 33) + ... + (32008 + 32009+ 32010)
= 3(1+3+ 32)+...+32008 (1+3+32)
= 3x13+...+32008 x13 ( có 670 nhóm)
=(3x13+...+32008 x13 )chia hết cho 13
hay 31 + 32 + 33 + ... + 32009 + 32010 chia hết cho 13